Presynaptic defects underlying impaired learning and memory function in lipoprotein lipase-deficient mice.

نویسندگان

  • Xunde Xian
  • Tingting Liu
  • Jia Yu
  • Yuhui Wang
  • Yifei Miao
  • Jianjun Zhang
  • Yan Yu
  • Colin Ross
  • Joanna M Karasinska
  • Michael R Hayden
  • George Liu
  • Dehua Chui
چکیده

Lipoprotein lipase (LPL) is predominantly expressed in adipose and muscle where it plays a crucial role in the metabolism of triglyceride-rich plasma lipoproteins. LPL is also expressed in the brain with highest levels found in the pyramidal cells of the hippocampus, suggesting a possible role for LPL in the regulation of cognitive function. However, very little is currently known about the specific role of LPL in the brain. We have generated a mouse model of LPL deficiency which was rescued from neonatal lethality by somatic gene transfer. These mice show no exogenous and endogenous LPL expression in the brain. To study the role of LPL in learning and memory, the performance of LPL-deficient mice was tested in two cognitive tests. In a water maze test, LPL-deficient mice exhibited increased latency to escape platform and increased mistake frequency. Decreased latency to platform in the step-down inhibitory avoidance test was observed, consistent with impaired learning and memory in these mice. Transmission electron microscopy revealed a significant decrease in the number of presynaptic vesicles in the hippocampus of LPL-deficient mice. The levels of the presynaptic marker synaptophysin were also reduced in the hippocampus, whereas postsynaptic marker postsynaptic density protein 95 levels remained unchanged in LPL-deficient mice. Theses findings indicate that LPL plays an important role in learning and memory function possibly by influencing presynaptic function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impaired synaptic vesicle recycling contributes to presynaptic dysfunction in lipoprotein lipase-deficient mice.

Lipoprotein lipase (LPL) is expressed at high levels in hippocampal neurons, although its function is unclear. We previously reported that LPL-deficient mice have learning and memory impairment and fewer synaptic vesicles in hippocampal neurons, but properties of synaptic activity in LPL-deficient neurons remain unexplored. In this study, we found reduced frequency of miniature excitatory posts...

متن کامل

The Important Role of Lipids in Cognitive Impairment

The current knowledge base on circulating serum and plasma risk factors of the cognitive decline of degenerative Alzheimer’s Disease is linked to cholesterol homeostasis and lipoprotein disturbances (i.e., total cholesterol, 24S-hydroxy-cholesterol, lipoprotein(a), or apolipoprotein E. Lipoprotein lipase (LPL) is also expressed in the brain, with the highest levels found in the pyramidal cells ...

متن کامل

Hypertension, hypertriglyceridemia, and impaired endothelium-dependent vascular relaxation in mice lacking insulin receptor substrate-1.

Insulin resistance is often associated with atherosclerotic diseases in subjects with obesity and impaired glucose tolerance. This study examined the effects of insulin resistance on coronary risk factors in IRS-1 deficient mice, a nonobese animal model of insulin resistance. Blood pressure and plasma triglyceride levels were significantly higher in IRS-1 deficient mice than in normal mice. Imp...

متن کامل

Low-density lipoprotein receptor-knockout mice display impaired spatial memory associated with a decreased synaptic density in the hippocampus.

The low-density lipoprotein receptor (LDLR) is the first described receptor for apolipoprotein E (apoE). We hypothesize that the absence of the LDLR, similar to the absence of apoE, results in impaired learning and memory processes. Six-month-old homozygous Ldlr-/- and wild-type littermates (Ldlr+/+), maintained on a standard lab chow diet, were used. Unlike humans, Ldlr-/- mice, under these co...

متن کامل

Task-specific enhancement of hippocampus-dependent learning in mice deficient in monoacylglycerol lipase, the major hydrolyzing enzyme of the endocannabinoid 2-arachidonoylglycerol

Growing evidence indicates that the endocannabinoid system is important for the acquisition and/or extinction of learning and memory. However, it is unclear which endocannabinoid(s) play(s) a crucial role in these cognitive functions, especially memory extinction. To elucidate the physiological role of 2-arachidonoylglycerol (2-AG), a major endocannabinoid, in behavioral and cognitive functions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 29 14  شماره 

صفحات  -

تاریخ انتشار 2009